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ABSTRACT

For cancer polyp detection based on CT colonography we investigate the sample
variance of two methods for estimating the sensitivity and specificity. The goal is the
reduction of sample variance for both error estimates, as a first step towards comparison
with other detection schemes. Our detection scheme is based on a committee of support
vector machines. The two estimates of sensitivity and specificity studied here are a
smoothed bootstrap (the 632+ estimator), and ten-fold cross-validation. It is shown that
the 632+ estimator generally has lower sample variance than the usual cross-validation
estimator. When the number of nonpolyps in the training set is relatively small we obtain
approximately 80% sensitivity and 50% specificity (for either method). On the other
hand, when the number of nonpolyps in the training set is relatively large, estimated
sensitivity (for either method) drops considerably. Finally, we consider the intertwined
roles of relative sample sizes (polyp/nonpolyp), misclassification costs, and bias-variance
reduction.

Keywords: virtual colonoscopy, classification, error estimation, support vector
machines, bias-variance reduction

1. INTRODUCTION

In any classification problem it is important to obtain error estimates for the classifier
that have both low bias and low variance, in addition to constructing a classifier that has
good sensitivity and specificity. A standard method for obtaining these error estimates
with generally good statistical properties is cross-validation, typically with k (= number
of folds) ten or higher. In this study we look at an alternative to error estimation scheme
that appears to have lower sample variance than cross-validation, namely the smoothed
bootstrap 632+ method introduced by Efron & Tibshirani, 1997. We do this in the
context of a decision engine based on a committee of support vector machines applied to
the problem of detecting colon cancer polyps. The full feature set is derived from a 3D
reconstruction derived from a CT colonography. Subsets of features are identified using a
genetic algorithm (GA), and a simple majority vote is made across the committee of
SVMs each trained using a different feature subset. The true colon polyps are those
detected by a complete colonoscopy, our gold standard. The nonpolyps are those declared
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to be (possible) polyps after a series of thresholds and simple filters is applied to the CT
reconstructions.

We begin with a description of the dataset and the features used for detection, discuss
the structure of the support vector machines (SVMs) used for classification in our
committee approach, briefly describe the smoothed-bootstrap 632+ estimator (Efron &
Tibshirani, 1997), and provide results of numerical experiments showing the variability
of 632+ and 10xCV (for both sensitivity and specificity) as the number of nonpolyps in
the training dataset is adjusted.

Finally, we briefly discuss approximating the optimal value of the relative number of
nonpolyps to true polyps in the training set needed to generate high sensitivity rates that
also have low sample variance. We observe that adjusting the number of nonpolyps in the
training set is partly equivalent to adjusting the misclassification costs in training the
decision engine. We point out that an unintended consequence of adjusting the number of
nonpolyps used in training (to increase sensitivity and optimally reduced sample
variance) is that such adjustment implies misclassification weights that may not
correspond to those understood or desired by the user of the decision engine.

2. MATERIALS

The data set contained 80 studies consisting of supine and prone screening of 40
average risk patients half of whom had at least one 1 cm or larger polyp and the
remaining 20 had no polyps. The 20 patients with polyps typically had polyps smaller
than 1 cm also. CT scans were done on G.E.Lightspeed scanners. Scanning parameters
were 120kVp, 50mAs (mean), field of view to fit (38-46 cm), 5 mm collimation, HQ
mode, and 3 mm reconstruction interval (2mm overlap). CT images were processed to
three-dimensional surface renderings of the colon by our research software. All 40
patients underwent complete colonoscopy examination. Among the 20 cases there were
65 polyps, of which 25 were large polyps (1 cm or larger), and of these only 18 are
identified by the radiologist.
The feature set used is derived from software that first segments the colon using a region
growing algorithm. Regions of interest along the colon wall are identified. A total of 80
quantitative features are defined for each polyp candidate, but we have seen that not all of
these features are eventually useful. Useful features include: maximum average polyp
neck geometric curvature, wall thickness, polyp volume, and average volumetric
Gaussian curvature. Further details can be found in Summers et al. (2002), and Miller et
al. (2003).

3. METHODS

Our basic classification scheme is a support vector machine (SVM) and our proposed
alternative to the 10xCV method for error estimation is the 632+ estimator (Efron &
Tibshirani, 1997). We first outline the structure of a SVM, then discuss the 632+ scheme,
outline our feature selection approach, and conclude with a discussion of the error
estimates, misclassification costs and sample sizes.
3.1 Support Vector Machines (SVMs) An essential reference is Hastie et al. (2001);
additional material can be found in Cristianini & Shawe-Taylor (2000) and Scholkopf et
al. (eds.) (1999). Consider first constructing an SVM based on the original data, which
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consists of N pairs (x;,y,),(x,,¥,),....(xy,yy ), for p-dimensional features (predictors) x;
and outcomes (polyp, nonpolyp) y;, =+1,0r -1.

Define a linear decision boundary (hyperplane) by

{x:f(x)=x"B+f,=0},
where fis a unit vector ",6’“ =1. We define a classification rule based on f{x) by

G(x)=sign[f(x)]
such that for the test pair (x,y), the observation y is declared a polyp if G(x) >0, and a
non-polyp if G(x) <0. We observe that f{x) is the signed distance from the data point x to
the hyperplane defined by f{x) = 0. We define the margin C for the SVM to be such that
2c=2/|4)

Optimal estimation of {f3,/3,} is quadratic with linear inequality constraints, and thus
is a convex optimization problem. When the two classes {y=+1}, {y=-1} can be
separated by a hyperplane in the feature space, then the optimization can be re-expressed
as:

min||§]| for all 5,4,
subject to

y(x p+B)=1, i=1,.,N.

More generally, when the two classes cannot be separated (the usual case), then define
so-called slack variables £=(&,,¢,,...,£,), and modify the constraints to

y,(x! B+ B)=1-¢&, foralli,
where

£ 20 and X < constant.

The general solution for S has the form

n N
B= Z oy x;
i=1
for coefficients ¢, subject to the constraints

N
0<g <y 2 ay=0,

and
oLy, (x{ B+ B) - (1-£)1=0,
H5: =0,
Y5/ B+ By) - (1= &) 20,
for i=1,2,...,N.

In the above we have defined

o, =y—u,;, foralli
where v is a tuning parameter, set by the user.

It can be seen that the solution ,23 has nonzero coefficients ¢, only for those
observations i for which the constraints

Yi(x! B+ By)-(1-£)=0

are exactly met (equality obtains). Such observations are called support vectors. These
data points are of two types: those that lie on the wrong side of the decision boundary,
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and those that lie on the correct side of the boundary but that are close to it, that is, they
reside within the margin.

To place the SVM scheme in a larger context, we note that the optimization problem
can be re-stated as a penalized likelihood problem, such that f(x)=x" B+ f3, solves the
problem

N

mingp, >, [1=3fGOL + A4
and where A=1/2y, and the subscript “+” denotes the positive part of the function. This
has the general form of loss function + penalty function. :

The optimization problem also an elegant statement in terms reproducing kernel
Hilbert spaces (see Hastie et al., 2001; pp. 377-384), and the mathematics of the subject
is rich and well studied. In this context the penalty function above can be generalized,
and many choices are then available for the kernel K, among which are polynomials of
user-specified degree d, radial basis functions, or weighted hyperbolic tangents (so-called
neural network kernels). Using alternative loss functions leads to different classification
schemes: the binomial log-likelihood generates the logistic regression scheme, and
squared-error loss leads to a penalized linear discriminant decision rule; see Hastie et al.,
(1997), p. 381.

An important further extension of the SVM architecture described above is the use of
functions, h;(x),j=1,2,..., M, of the original data vector x. It is possible that such

functions transform the problem into a nearly linear one in a sufficiently high dimen-
sional space, and thus that the decision boundary can be easily found, and possibly such
that the data classes are fully separated. The search for such superior separating
functions may be unrewarding however, and we expect instead to see that a large family
of transformations produces closely similar results.

We now consider the error estimate problem and the possible reduction in sample
variance of the estimates.

3.2 The 632+ error estimator It is well known that for any classification problem the
observed (or, apparent) error rate, derived from testing a decision engine on the same data
as it was trained on, routinely gives estimates that are much too optimistic; see for
example Efron (1986).

Ideally we want error estimates (of sensitivity and specificity) to satisfy three criteria
at once: high mean values, low bias, and low variance. Some of the alternatives to the
apparent error estimate have low bias or low variance, but often not both at once. The
first requirement of high mean values is, in our perspective, a function of finding a good
decision engine and is properly a model selection problem. Here we work with decision
engines that are ensemble versions of SVMs, where it has been observed that ensemble or
committee versions of any reasonable decision engine tend to improve error rates over
any single engine in the same class; see Dietterich (1999).

As alternatives to apparent error rate, procedures based on cross-validation and the
bootstrap have been proposed, and extensively studied; see Efron & Tibshirani (1997).
Constructing the algorithm begins as follows:

Let N be the size of the training dataset X

1) Set aside a single case in the training data, say (x,,y,)

2) Of the remaining N-1 cases, draw a bootstrap sample X* of size N
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3) Train the classifier on X* and make a prediction for the case (x,,y,)

4) Repeat Steps (2) and (3) K times, each time making a prediction for (x,,y,)

5) Replace (x,,y,) in the dataset and consider the next case (x,,y,)

6) Repeat Steps (2) and (3) and make a prediction for the case (x,,y,)

7) Repeat Step (6) for all cases in the dataset;

8) The average error rate over all predictions is called Err'!
Efron & Tibshirani refer to Err'" as the (simple) bootstrap smoothed leave-one-out
estimator, and observe that while it has desirably lower variance than the usual leave-one-
out estimator (involving no resampling and thus no smoothing), it has a noticeable bias
upward: it yields a pessimistic outcome, as opposed to the apparent error rate, errthat, as
noted, is uniformly too optimistic. To adjust for this bias, they introduce two further
innovations that attempt to reduce the bias and still maintain low variance. Thus, let

Err'®® = 368(err)+.632(Err").

The weights are derived from the fact that a bootstrap sample in general captures only
the fraction .632 of any set of cases, and so the bootstrapped estimator Err*" needs to be
weighted relative to err Since the estimator erris biased downward, it is presumed that
Err‘®®will be less biased upward.

However, with the bias adjustment above comes the likelihood that the low variance
property of Err'” will have been disturbed, and the simulations in Efron & Tibshirani
confirm this. Hence they introduce a second adjustment, aimed at reducing the overfitting
inherent in 277 Ohe new estimator, called Err"®**), appears from their simulations to
have reduced sample variance: see Efron & Tibshirani (1997) for full details and
motivation for the adjustment. Briefly, for the decision rule r,(y) define the loss function

Oly.r,(¥)]=+1 if r,(y)=y, =0 otherwise.

Then let

= r 2 2 Qe ).

The estimator ¥ is intended to capture the no information error that would result if the
data X and the class variable y were statistically independent: the predictor X has no
information concerning the class variable y. In such a case errwould be .50, for any
classification rule.
Next, define
Err'"”'=min(Err
and

A

R = (Err™'=err)/(§—err) if Err® and ¥>err

1)

VY,

= 0 otherwise.
Finally, we arrive at
Err'®?) = ErrS) 4 (ErrY'— g77). 368 - .632; R
1-.368R'

The series of adjustment made above, though largely heuristic, were reasonably
successful in the numerous simulations discussed in Efron & Tibshirani (1997).

3.3 Feature Selection using a Genetic Algorithm (GA) In earlier work it has been
found that using smaller sets of features for training classifiers for colon polyps detection
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leads to better detection results (lower bias) and reduced variance; see Jerebko et al.
(2003). Thus a neural net classifier having many input features tends to do less well than
one with fewer features, when applied to test data. This is a generally observed result, and
relates to the trade-off between model complexity and generalizability (accuracy on test
data); see, for example Hastie et al. (2001) Chapter 7.

Thus, we sought to find small sets of features (here, four) as input to a committee
classifier, and to obtain good sets we implemented a genetic algorithm. This returned
sets of features that, separately, were good predictors when used as input to an SVM, see
Miller, et al (2003) for details. The fitness function used therein was the 632+ estimator
studied here. In this study of feature selection it was found that the GA approach
uncovered sets of features that had approximately the same sensitivity, but markedly
improved specificity, when compared to a simple forward stepwise selection approach.
3.4 The Committee Approach to CAD for Colon Polyps Use of a committee (or,
ensemble) approach to classification has been the object of much recent research in the
machine learning literature. The committee used here requires construction of a number
of base classifiers (SVMs), followed by a simple majority vote across the component
SVMs. Other ensemble methods are being studied construct the base classifiers in
different ways or use iterative weighting across the chosen classifiers, and such
committees include methods such as bagging, boosting, and the general additive model,
see for example Dietterich (2002). Of particular interest is the method of logistic
boosting, which returns not a simple class assignment for each case, but a probability
class estimate for the case. These more involved methods are currently being evaluated
for our colon polyp detection data.

4. RESULTS

We being by forming a committee (using majority voting) of six SVMs, each based
on features selected by the GA algorithm; see Table 1 for the feature list. The committee
classifier was then applied to the colonography dataset described above, and both 10xCV
and 632+ were used in estimating sensitivity and specificity. This process was repeated
100 times. Figures 1 — 8 display the results of our numerical experiments. ROC curves
are displayed wherein the number of nonpolyps used in the training set was varied. We
compared the usual 10xCV method for error estimation with the 632+ estimator
discussed above; standard deviations (std) across the 100 runs are given (standard errors
= std/10). We made comparisons for both methods when the cost of misclassification was
varied, and also display results for varying the nonpolyp sample size used in training the
committee of SVMs.

Figs. 1 and 2 show the outcomes for 10xCV, with equal cost for misclassification. We
find that a reasonable choice for the nonpolyp sample size is approximately 20, at which
point the sensitivity is 80% with a specificity of 60%. However, the std of the sensitivity
estimate at this point is rather high (0.2). Figs. 3 and 4 show the results of using a weight
for misclassification (true polyp/nonpolyp = 2.5). Here a reasonable choice of nonpolyp
sample size is approximately 40, at which the sensitivity is again 80% with a specificity
of 60%. However, we see that the variability of the sensitivity estimate has dropped
considerably (now std = 0.05) while the std for specificity has increased slightly.
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Review of the corresponding plots for the 632+ estimator (Figs. 5, 6, 7, and 8) reveals
a similar story regarding the optimal nonpolyp sample size in the training set. However,
they also reveal a difference between 10xCV and 632+ as error estimators: the 632+
estimator has reduced variance relative to 10xCV when the number of nonpolyps is
above 50, for both the equal and weighted costs. On the other hand, the 632+ estimator
has greatly reduced, and unacceptable, sensitivity for these higher nonpolyp sample sizes:
below 40% sensitivity for both equal and weighted cost.

CONCLUSIONS

Our proposed estimator, 632+, can indeed reduce variance in the estimation of
sensitivity and specificity (compared to 10xCV), but does so only when the sample size
of the nonpolyps in the training set is sufficiently large (above 20 with our dataset).
However, in this range the observed average sensitivity (using either 632+ or 10xCV) is
unacceptably low: drops below 80% with equal costs. With unequal costs (true/nonpolyp
= 2.5) sensitivity remains above 80% with 40 nonpolyps in the training set, and the 632+
variance remains consistently below that of 10xCV.

We conclude that optimal sensitivity and specificity (above 80%, and 50%
respectively) was found with approximately 20 nonpolyps in the training set, and that for
such data the 632+ estimator had reduced variability relative tol0xCV when using equal
costs. When unequal costs are imposed, optimal sensitivity and specificity was found
with approximately 40 nonpolyps in the training set, and here again the 632+ estimator
had reduced variability relative to 10xCV. A more complete study of cost functions and
sample sizes is required to draw conclusions regarding optimal classifying engines and
datasets, but in all cases considered here 632+ generally improves on 10xCV for
obtaining error estimates with reduced variance.
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